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It is shown that is is possible to test for the dragging of inertial frames in 
Einstein's theory of general relativity by using the discrepancy between clocks 
synchronized by clock transport in elliptical orbits. Possible experiments are 
discussed. 

A fundamental procedure in the special theory of  relativity is the 
synchronization of standard clocks at rest in any inertial systems using light 
signals (Einstein, 1905; Stachel, 1980). The notation can be extended to 
clocks lying along a curve in a noninertial frame. Then, in general, the 
synchronization between the clocks at the end points of a curve depends 
on the particular curve chosen, i.e., the synchronization is path dependent 
(Landau and Lifshitz, 1951; Cohen and Moses, 1977). 

Clock transport is an alternative synchronization method whereby a 
standard clock is synchronized with a master clock and then is slowly 
transported to a new location to set other clocks (at rest in an inertial frame) 
to be at the same time. In an inertial frame, this procedure is equivalent to 
electromagnetic synchronization (Cohen and Moses, 1977). 

In a noninertial frame, clock transport synchronization (like elec- 
tromagnetic synchronization) gives a path dependent result; however, the 
two methods do not necessarily give the same result. 

The difference between the coordinate and proper time intervals 
between two events A and B along a test particle trajectory 

<< 1, c-7 = -  c2----~-<< 
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is (Landau and Lifshitz, 1951; Moiler 1952; Adler, Bazin, and Schiffer, 
1975; Arzelies, 1966; Robertson and Noonan, 1968; Rindler, 1969; Fock, 
1964) 

It b 
a ( t - ~ )  = c -2 ,i (~v2-q' )  at (1) 

This expression is valid for any globally time-orthogonal metric g~,~, 
with goo = 1 + (2qb/c2), where qb can be interpreted as a scalar gravitational 
potential. The purpose of this paper is to extend the method of clock 
transport synchronization to stationary metrics to test for the effect of 
dragging of inertial frames. To do this we begin from the Brill and Cohen 
solution (Brill and Cohen, 1966). They have shown that, in the equatorial 
plane of a slowly rotating massive object, the metric can be written 

- d r  2 = - A  2 dt2 + B 2 dr2+ r2( dd) - f ~  dt)  2 (2) 

where A Z = B - 2 = l - ( 2 r n / r )  and f ~ = ( 2 J / r  3) with J the body's angular 
momentum, J = K + M §  and c = 1. The generalization of expression (1), 
including dragging of inertial frames, is 

a~'= 1 - - - + a p + 2 d P K M . R ~ w  dt (3) 
~ 2 

with 

dq~ += 
dt 

For one revolution about a geosynchronous orbit (radius r, orbital 
angular velocity to of the earth) we obtain (Rosenblum, 1987) 

A(t - ~r) = 37rto2r 2 - 4 7 r K M R 2  w (4) 
r 

The synchronization gap A ( t -  ~-) is relative to a distant inertial frame and 
is due to the motion of the clock and not to the choice of a noninertial 
frame. This synchronization gap is a cumulative effect. The first term of 
expression (4) corresponds to what was obtained in previous work (Cohen, 
Moses, and Rosenblum, 1983; Rosenblum, 1987) and for one orbit corre- 
sponds to an effect of 13.6/xsec. We are of course interested in the second 
term in expression (4) corresponding to the dragging of inertial frames. 

An interesting question to be resolved is whether or not the use of 
elliptical orbits with high eccentricity will enhance this effect. After assuming 



Clock Transport Synchronization 923 

an elliptical orbit in expression (3) and some algebraic manipulation,  we 
obtain 

4 7rKM ~R~to A ( t -  ~-) 3 7 r M M e a ( 1 - e 2 )  (5) 
1 a(1 - e 2) 

with a the semimajor axis of  the ellipse, l the angular momentum of  the 
satellite, and e the eccentricity of  the ellipse. For one revolution about  a 
geosynchronous orbit expression (4) is obtained. The real question is 
whether or not, by using the ( 1 - e 2 )  -1 in expression (5), it is possible to 
obtain a significantly enhanced result. I f  we make the reasonable assumption 
of a perihelion distance of  6,500 km and the semimajor axis of  the ellipse 
to be a geosynchronous orbit of  approximately 42,000 km, we obtain 

(1 - e2) -1 --- 3 x 101 (6)  

This, of  course,  gives us another order of  magnitude above our 
previously obtained result of  1.92 x 10 -17 seconds for a geosynchronous 
orbit (Rosenblum, 1987). 

Of  course, another order of  magnitude helps us with possible clock 
accuracies of  I part  in 1018 and stability over a two-year period most likely 
occurring in the next five years (Dehmelt,  1985). Also, this additional order 
helps in the comparison of  the clock on the satellite with the millisecond 
pulsar. 

To summarize,  the arc of  an elliptical orbit leads roughly to an order 
of  magnitude improvement  in the use of  clocks on satellites to detect the 
dragging of  inertial frames. 
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